Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Neuroscience Bulletin ; (6): 194-212, 2023.
Article in English | WPRIM | ID: wpr-971540

ABSTRACT

Post-stroke depression (PSD) is a serious and common complication of stroke, which seriously affects the rehabilitation of stroke patients. To date, the pathogenesis of PSD is unclear and effective treatments remain unavailable. Here, we established a mouse model of PSD through photothrombosis-induced focal ischemia. By using a combination of brain imaging, transcriptome sequencing, and bioinformatics analysis, we found that the hippocampus of PSD mice had a significantly lower metabolic level than other brain regions. RNA sequencing revealed a significant reduction of miR34b-3p, which was expressed in hippocampal neurons and inhibited the translation of eukaryotic translation initiation factor 4E (eIF4E). Furthermore, silencing eIF4E inactivated microglia, inhibited neuroinflammation, and abolished the depression-like behaviors in PSD mice. Together, our data demonstrated that insufficient miR34b-3p after stroke cannot inhibit eIF4E translation, which causes PSD by the activation of microglia in the hippocampus. Therefore, miR34b-3p and eIF4E may serve as potential therapeutic targets for the treatment of PSD.


Subject(s)
Animals , Mice , Depression , Eukaryotic Initiation Factor-4E/metabolism , MicroRNAs/metabolism , Neurons/metabolism , Stroke/metabolism
2.
Journal of Veterinary Science ; : 369-378, 2004.
Article in English | WPRIM | ID: wpr-79776

ABSTRACT

Evidences show that eukaryotic mRNAs can perform protein translation through internal ribosome entry sites (IRES). 5'-Untranslated region of the mRNA encoding apoptotic protease-activating factor 1 (Apaf-1) contains IRES, and, thus, can be translated in a cap-independent manner. Effects of changes in protein translation pattern through rapamycin pretreatment on 4-(methylnitrosamino)-1-(3-pyridyl)-butanone(NNK, tobacco-specific lung carcinogen)-induced apoptosis in human bronchial epithelial cells were examined by caspase assay, FACS analysis, Western blotting, and transient transfection. Results showed that NNK induced apoptosis in concentration- and time-dependent manners. NNK-induced apoptosis occurred initially through cap-independent protein translation, which during later stage was replaced by cap-dependent protein translation. Our data may be pplicable as the mechanical basis of lung cancer treatment.


Subject(s)
Humans , Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Apoptotic Protease-Activating Factor 1 , BH3 Interacting Domain Death Agonist Protein , Blotting, Western , Bronchi/metabolism , Carcinogens/pharmacology , Carrier Proteins/metabolism , Caspases/metabolism , Cytochromes c/metabolism , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Flow Cytometry , Nitrosamines/pharmacology , Protein Biosynthesis , Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA Cap-Binding Proteins/physiology , Sirolimus/pharmacology , Time Factors , bcl-2-Associated X Protein
SELECTION OF CITATIONS
SEARCH DETAIL